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Abstract - A theoretical study of heat exchange during the cooling of a rotating cylinder by an im-
pinging jet is carried out. The temperature field is bidimensional - the longitudinal heat conduction being
neglected - and is obtained by solving the heat equation using Laplace and Fourier transforms. In order
to assess the external heat flux condition, an inverse method using simulated temperature measurements
inside the cylinder is carried out. The results of this study show that the method is reliable, in spite of a
non-negligible influence of the measurement errors.

1. INTRODUCTION

Impinging jets are very effective means for cooling solid media : a cold fluid jet that impacts a hot surface
vaporizes partly. By this technique, it is possible to locally extract very important heat fluxes, the latent
heat associated with phase change of the working fluid being used to yield higher heat transfer coefficients.

This kind of techniques concerns many engineering applications : cooling of increasingly powerful
chips in electronics, [11], cooling of tools during machining, [4,5], ... In order to avoid any heterogeneity
in the resulting properties that can stem from rewatering or from nonuniform temperature, models are
necessary for the prediction of water cooling and for its local control. We will focus here on the problem
of the control of the thermal path taken by a moving metal part.

A transient two-dimensional inverse method - based on singular value decomposition and a function
specification method - will be used to estimate wall heat flux in liquid jet cooling of a moving solid.
Simulated inversion on a noised signal are thus presented. Future work will be concerned to the use of
experimental data - the experimental set-up being in construction - in order to assess real cooling fluxes.

2. DIRECT HEAT TRANSFER PROBLEM

A rotating metal cylinder (angular velocity ω in the direct orientation of Figure 1) of length l, is composed
of two layers of radii r1 and r2 as shown in Figure 1. A uniform and time-constant surface heat source
P(W) can be dissipated by Joule heating through electrical heating at the interface radius r1. In practice,
it will be implemented through three electrical wires inserted into grooves machined in the internal surface
of the external cylinder. The length of the cylinder is assumed to be a lot larger than the external radius
in order to consider the axial heat transfer as negligible. The values of all the parameters that will be
used in the simulations are given in Table 1.

Table 1 : Parameters used in the study.

Parameter Value
λ 90,7 W.m−1.K−1

ρc 3.919.520 J.m−3

r1, r2, l 0,049 m, 0,0875 m, 0,4 m
P , ω 6000 W, 6 rad.s−1

h , Te 100 W.m−2.K−1, 20 ◦C

Neglecting axial heat conduction, the temperature Ti in each domain i (i = 1, 2), in a non-moving
laboratory coordinates system, is solution of the heat equation associated with its initial, boundary and
periodicity conditions :

∂2Ti

∂r2
+

1

r

∂Ti

∂r
+

1

r2

∂2Ti

∂γ2
−

ω

a

∂Ti

∂γ
=

1

a

∂Ti

∂t
(1)

where a is the material (Nickel) thermal diffusivity of both layers, defined by a = λ
ρ Cp

.
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The boundary and interface conditions are the following :





−λ∂T2

∂r (r = r2, γ) = h(γ)[T2 − Te] ; ∂T1

∂r (r = 0) = 0 ; Ti(r, γ + 2π) = Ti(r, γ)

P
2 π r1 l − λ∂T1

∂r (r = r1, γ) = −λ∂T2

∂r (r = r1, γ) ; T1(r = r1, γ) = T2(r = r1, γ)

(2)
the initial condition being :

Ti(r, γ, t = 0) = T SS(r) (3)

The first boundary condition does not allow the use of the method of separation of variables due
to the nonconstant value of coefficient h(γ). In order to overcome this difficulty, it is possible to use a
variable flux density condition ϕ on the outer radius instead :

−λ
∂T2

∂r
(r = r2, γ) = ϕ2(γ) (4)

The direct problem that is considered can then be solved by expressing temperature T in terms of
function ϕ2(γ). It corresponds to a two-fold thermal excitation :

- starting from thermal equilibrium at temperature Te (equal to air temperature), the rotating cylinder
is heated at r = r1 with a uniform surface heat source P(W) that does not vary with time. The heat
is dissipated by convection (and radiation) at r = r2 through a uniform heat transfer coefficient h.
The considered steady-state heat transfer T SS(see Figure 1) is solution of the system (where subscript i

designates temperature T in the central layer (0 ≤ r < r1; i = 1) and in the outer layer (r1 < r ≤ r2; i =
2))

d2Ti

dr2
+

1

r

dTi

dr
= 0 (5)





−λdT2

dr (r = r2) = h [T2 − Te] ; T1(r = r1) = T2(r = r1)

P
2 π r1 l − λdT1

dr (r = r1) = −λdT2

dr (r = r1) ; −λdT1

dr (r = 0) = 0
(6)

hence 



TSS(r ≤ r1) = Te + P

(
1

2 π r2 l h + 1
2 π λl ln( r2

r1
)

)
= Tc

TSS(r ≥ r1) = Tc −
P

2 π λl ln( r
r1

)

(7)
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Figure 1 : Model geometry and steady-state temperature distribution.

- at time t = 0, a water jet centered at γ = π impinges on the cylinder and creates a moving liquid
film at the cylinder surface : the resulting surface heat flux at r = r2 in the laboratory frame is ϕ2(γ, t).
This transient regime is considered until a new equilibrium is reached for P = 2πr2 l ϕ 2 ave(∞), where
ϕ 2 ave is the angular average of ϕ2. The resulting transient temperature field in the cylinder T t is the
sum of the solutions of three problems :

T t(r, γ, t) = T relax(r, t) + T adia(r, t) + T cool(r, γ, t) (8)
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- T relax(resp. T adia) is the axisymmetrical 1D transient temperature field that results from the natural
relaxation of the initial T SS(r) field (resp. produced by internal heating P at radius r1) inside the cylinder
that is now insulated (adiabatic boundary at r = r2 : h = 0) with internal heating P (resp. the initial
temperature) being equal to zero. These two fields are described by the equation

d2Ti

dr2
+

1

r

dTi

dr
=

1

a

dTi

dt
(9)

the initial and boundary conditions being

for T relax :





−λdT2

dr (r = r2) = 0 ; −λdT1

dr (r = 0) = 0 ; Ti(r, t = 0) = T SS(r)

−λdT1

dr (r = r1) = −λdT2

dr (r = r1) ; T1(r = r1) = T2(r = r1)
(10)

for T adia :





−λdT2

dr (r = r2) = 0 ; −λdT1

dr (r = 0) = 0 ; Ti(r, t = 0) = 0

P
2 π r1 l − λdT1

dr (r = r1) = −λdT2

dr (r = r1) ; T1(r = r1) = T2(r = r1)

(11)
Applying the Laplace transform to the time variable t that is replaced by Laplace parameter p

L

[
T (r, t)

]
= T (r, p) =

∫ +∞

0

T (r, t) exp (−p t)dt (12)

then solving the obtained equations, we have with α =
√

p
a :

T
relax

1 (r, p) = −
P

2πλ l p
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K0(α r1) +

I0(α r1)

I1(α r2)
K1(α r2)

]
−

1

α r2

1

I1(α r2)

}
I0(α r) +

TSS(r)

p
(13)

T
relax
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2πλ l p
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1

α r2

I0(α r)

I1(α r2)

}
+

TSS(r)

p
(14)

and

T
adia

1 (r, p) =
P r1

λ p

[
K0(α r1) +

I0(α r1)

I1(α r2)
K1(α r2)

]
I0(α r) (15)

T
adia

2 (r, p) =
P r1

λ p

[
K0(α r) +

K1(α r2)

I1(α r2)
I0(α r)

]
I0(α r1) (16)

Return in the time domain is made numerically using Stehfest’s algorithm, [9,10] :

Ti(r, t) =
ln2

t

N∑

j=1

Vj T i

(
r, p =

j ln2

t

)
with N=10 in our case (17)

hence
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Figure 2 : Temperature distribution during relaxation (left) and adiabatic heating (right) regimes.
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- T cool is the 2D transient temperature field that is produced by surface jet cooling ϕ2(γ, t), without
any internal heating (P = 0) and starting from an initial zero temperature field.

2.1. Study of the jet cooling regime

Axial heat conduction being neglected and the cylinder being considered as a monolayer cylinder, tem-
perature is solution of the following equation in a non-moving laboratory coordinates system :

∂2T

∂r2
+

1

r

∂T

∂r
+

1

r2

∂2T

∂γ2
−

ω

a

∂T

∂γ
=

1

a

∂T

∂t
(18)

the associated boundary conditions being :




T (r, γ + 2π) = T (r, γ) (periodicity conditions)

−λ∂T
∂r (r = r2, γ) = ϕ2(γ, t) ; ∂T

∂r (r = 0) = 0
(19)

and the initial condition :
T (r, γ, t = 0) = 0 (20)

The considered cooling flux ϕ2, that is shown in Figure 3, is assumed to be gaussian and is given by

ϕ2(γ, t) = Kt e−
1
2 (

γ−π
σc

)
2

e−t/tc +
P

2π r2 l
(21)

with Kt= 10 6W.m−2 and σc = 0.456 rad (which corresponds to the angular thickness of the jet). The
second term in this equation allows a steady-state asymptotic solution (t → ∞) equal to Te for T t (see
eqn.(8)).
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Figure 3 : Distribution of the cooling flux ϕ2 with respect to time.

The periodicity conditions relative to the γ-coordinate allow us to use the Fourier transformation
(superscript`∼ )́ in the γ-direction associated with the Laplace transformation (superscript` )́ applied
to the time variable :

T̃ (r, n, p) =

∫
∞

0

∫ 2π

0

T (r, γ, t) exp (−j n γ) exp (−p t) dγ dt (22)

The double transform of the radial heat flux density ϕ = −λ ∂T
∂r is linked to the transformed tempe-

rature by

ϕ̃(r, n, p) =

∫
∞

0

∫ 2π

0

(
− λ

∂T

∂r

)
exp (−j n γ) exp (−p t) dγ dt = −λ

dT̃

dr
(23)

Applying this transformation to eqn.(18), then making a double integration by parts that takes into
account the boundary as well as the periodicity and initial conditions yields :

d2T̃

dr2
+

1

r

dT̃

dr
−

(
n2

r2
+

p

a
+ j n

ω

a

)
T̃ = 0 (24)
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with boundary conditions : {
dT̃
dr (r = 0, n, p) = 0

−λdT̃
dr (r = r2, n, p) = ϕ̃2(n, p)

(25)

The general solution for eqn.(24) uses the modified Bessel functions :

T̃ (r, n, p) = an In(αn r) + bn Kn(αn r) , with αn =

√
p + j nω

a
(26)

The solution of system (24)-(25) is :

T̃ (r, n, p) = −
1

λ

In(αn r)

αn I ′

n(αn r2)
ϕ̃2(n, p) (27)

with I
′

n(x) the derivative of In(x) being calculated as :

I
′

n(α r2) = α In−1(α r2) −
n

α r2
In(α r2) (28)

The shift property of the Laplace transform (operator L(.)) can be written as F (p+K) = L

[
exp(−K t) f(t)

]

- where F (p) = L

[
f(t)

]
- and can be applied to eqn.(27) with K = j nω, which gives the following ex-

pression for the nth harmonic of temperature in the time domain using a convolution product :

T̃ (r, n, t) = −
1

λ

∫ t

0

[
ϕ̃2(n, τ)

] [
e−j n ω (t−τ)Zn(r, t − τ)

]
d τ = T̃n (29)

with

Zn(r, p) =

In

(√
p
a r

)

√
p
a I ′

n

(√
p
a r2

) = F (r, p) (30)

Return to the original space domain is given by the following expression :

T cool(r, γ, t) =
T̃0

2π
+

∞∑

n=1

[
T̃n

2π
ejnγ

]
+

∞∑

n=1

[
T̃ ∗

n

2π
e−jnγ

]
(31)

where superscript`∗´designates the complex conjugate.

Hence :

T cool(r, γ, t) =
T̃0

2π
+

1

π

∞∑

n=1

[
Re(T̃n) cos(nγ) − Im(T̃n) sin(nγ)

]
(32)

2.2. Results for the direct problem

Measurements are made through NTC thermocouples that are embedded in the moving cylinder at radius
r = r2. At t = 0, when the jet impinges the cylinder, the first thermocouple is at angle γ1(0) = γref . At
the same time, thermocouple number m (m = 1 to NTC) is at angle γ′

m = γm(0) = γref + (m − 1)∆γ,
where ∆γ = 2π/NTC . At later time, angle γm(t) is given by

γm(t) = γ′

m + ωt (33)

The observed temperature for this thermocouple T t
m(t) = T t(r2, γm(t), t), see eqn.(8), is calculated

through a numerical quadrature (trapezoidal rule) with a ∆t = 0.1 s time step. Moreover, because of the
unbounded behavior of Zn(r2, t) as t goes to zero, this function is approximated by

Z̆n(r2, t) =

√
a

πt
+

1

2

a

r2
for t < tlim = ilim∆t. (34)
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Excitation ϕ2(γm(t), t) for m = 1 and γref = π, given by equation (21), as well as temperature
responses T t(t) and T cool(t), are plotted in Figure 6 for tc = 1 s. A total number of NH = 12 harmonics
have been used for the truncation of eqn.(32). Indeed, since the total number of harmonics depends on
the space shape of heat flux ϕ2, the optimal value for the studied test case is NH = 12 for NTC = 24
thermocouples, which corresponds to Shannon’s sampling theorem.

t (s)

T
(°

C
)

0 1 2 3 4 5 6

284

286

288

290

292

294

296

298

300
Temperature

0.0E+00

1.0E+05

2.0E+05

3.0E+05

4.0E+05

5.0E+05

6.0E+05

7.0E+05

8.0E+05

9.0E+05

1.0E+06

Heat Flux

ϕ
(W

.m
)

-2

t (s)

T
(°

C
)

1 2 3 4 5 6

-12

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

Cooling temperature

0.0E+00

1.0E+05

2.0E+05

3.0E+05

4.0E+05

5.0E+05

6.0E+05

7.0E+05

8.0E+05

9.0E+05

1.0E+06

Heat Flux

ϕ
(W

.m
)

-2

Figure 4 : Variations of T t(t) and T cool(t) for the first thermocouple at r = r2 (with γref = π).

3. INVERSE PROBLEM

The inverse problem consists in estimating the surface heat flux ϕ2 starting from transient measurements
of NTC temperature sensors (NTC= 24 thermocouples) located at the boundary r = r2. All other quan-
tities appearing in the formulation of the physical problem are assumed to be exactly known, but the
measurements may contain random errors. We consider here only the cooling component T = T cool.
Let’s consider eqn.(29) :

T̃ (r, n, t) = −
1

λ

∫ t

0

[
ϕ̃2(n, τ)

] [
e−j n ω (t−τ)Zn(r, t − τ)

]
d τ (35)

As Zn → ∞ when t → τ , we use an asymptotic behavior Z̆n(r2, t − τ) for Zn(r2, t − τ) and we obtain

T̃ (r, n, t) = −
1

λ

[ ∫ t−tlim

0

ϕ̃2(n, τ) e−j n ω (t−τ) Zn(r, t − τ)d τ

+

∫ t

t−tlim

ϕ̃2(n, τ) e−j n ω (t−τ)

(√
a

π(t − τ)
+

1

2

a

r2

)
d τ

] (36)

In practice, we evaluate this expression using a piecewise constant function ϕ2 :

ϕ2(γ, t) = ϕ2k(γ) for tk ≤ t ≤ tk+1 (37)

with tk = k∆t and k ≥ 0, where ∆t is both a discretization time step for ϕ2 and a calculation time step
for temperature T.

It yields for ti = i∆t (i ≥ 2) and with t0 = 0 and ϕ̃2nk =
∫ 2π

0
ϕ2k(γ) e−j n γ dγ :

T̃ (r, n, ti) = −
1

λ

[ i−2∑

k=0

ϕ̃ 2nk

∫ tk+1

tk

e−j n ω (ti−τ) Zn(r, ti − τ)d τ

+ ϕ̃ 2n(i−1)

∫ ti

ti−tlim

e−j n ω (ti−τ)

(√
a

π(ti − τ)
+

1

2

a

r2

)
d τ

] (38)

hence

T̃ (r, n, ti) =

i−1∑

k=0

Xi,k+1 ϕ̃ 2 n k (39)

where the coefficients Xi,k+1 are :

Xi,k+1 = −
1

λ

∫ tk+1

tk

e−j n ω (ti−τ) L−1

[ In

(√
p
a r

)

√
p
a I ′

n

(√
p
a r2

)
]

ti−τ

d τ if k < i − ilim (40)
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and

Xi,k+1 = −
1

λ

∫ tk+1

tk

e−j n ω (ti−τ)

(√
a

π(ti − τ)
+

1

2

a

r2

)
d τ if k ≥ i − ilim (41)

This yields in a matrix form

T̃ (r, n) =




T̃ (r, n, t1)
...

T̃ (r, n, ti)


 =




X11 . . . 0
...

. . .
...

Xi1 . . . Xii



n




ϕ̃2 n, 0

...
ϕ̃2 n, i−1


 = Xn(r) ϕ̃2 n (42)

where matrix X is the sensitivity matrix, which defines the relationship between a change in the surface
heat flux and the corresponding change in the computed temperature response T̃n.

An excitation ϕ2 has been generated according to (21) and discretized by time averaging according to
(37). ϕ̃2n k has then been calculated through numerical quadrature and direct solution of (42) for r = r2

yields simulated values of Tm(t) through (32).
Starting from Tm(t), one gets a simulated experimental signal for thermocouple m

Ym(ti) = Tm(ti) + εm i (43)

where εm i (m = 1 to NTC , i = 1 to if ) is an uncorrelated, zero mean and identically distributed normal
noise of constant standard deviation σ.
Then, experimental Fourier transforms of temperatures Ym are calculated through :

Ỹn,i =

NT C∑

m=1

Ym(ti) e−j n γm(ti)∆γ (44)

The vector ϕ 2n is finally estimated from transforms of measured temperature Ỹn using the estimator of
the ordinary least squares, [1],

ϕ̂ 2n = (Xt
n Xn)−1Xt Ỹn (45)

with Ỹn = [Ỹn,1 ... Ỹn,i]
t.

Return to the original space domain is made by applying the inverse Fourier transform.

Exact and recalculated temperatures as well as exact and estimated cooling heat fluxes are plotted in
Figure 5 for a noise having a standard deviation σ = 0.1◦C and in Figure 6 for a noise having a standard
deviation σ = 0.5◦C.
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Figure 5 : Exact and estimated temperatures and flux for γref = 0 and γref = π with σ = 0.1◦C.
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Figure 6 : Exact and estimated temperatures and flux for γref = 0 and γref = π with σ = 0.5◦C.

In each case, we have considered thermocouples T1 and T13, which correspond respectively to γref = 0
(opposite side of the jet at t = 0) and γref = π (under the jet at t = 0).

We can see that our inversion problem is quite well-posed : a five fold increase of the noise standard de-
viation (from 0.1 to 0.5◦C) does not destabilize the reconstructed flux and yields quite good temperature
residuals. These residuals are higher for times when the thermocouples are far from the jet. We can notice
that a finer time step for the flux (0.01 s instead of 0.1 s, for σ = 0.5◦C) leads to an unstable inversion
(not shown here), which shows that the flux parametrization step constitutes the first regularization factor.

4. CONCLUSION

An analytical solution is obtained for the two-dimensional transient temperature response of a finite-
length rotating heated cylinder subjected to a known but time-dependent and not uniform cooling heat
flux at its surface. This solution, based on the idea of Laplace and Fourier transforms, is obtained by
solving the heat equation and is explicitly given using series expansions and modified Bessel functions.
Using the thermophysical properties of Nickel, the variations of transient temperature inside the sample
is computed and presented for demonstration purpose.

Right now, in our first simulations, it has been shown that a whole time domain inversion technique
applied on experimental Fourier angular transform of measured temperatures (which corresponds to a
space Singular Value Decomposition, [6,8], and stems directly from the quadrupole method used in a
transformed space, [3,7]) allows to recover the surface heat flux, which is possible as long as noise is small
enough. A more powerful time inversion technique using Beck’s future time steps, [2], will be implemented
in the near future, and an experimental set-up based on this study - see Figure 7 below - is about to be
used.

Figure 7 : Experimental set-up.
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